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Abstract. Given integers r ě 2 and n, t ě 1 we call families F1, . . . , Fr Ď Pprnsq

r-cross t-intersecting if for all Fi P Fi, i P rrs, we have |
Ş

iPrrs Fi| ě t. We obtain a
strong generalisation of the classic Hilton-Milner theorem on cross intersecting families.
In particular, we determine the maximum of

ř

jPrrs |Fj | for r-cross t-intersecting families
in the cases when these are k-uniform families or arbitrary subfamilies of Pprnsq. Only
some special cases of these results had been proved before. We obtain the aforementioned
theorems as instances of a more general result that considers measures of r-cross t-
intersecting families. This also provides the maximum of

ř

jPrrs |Fj | for families of possibly
mixed uniformities k1, . . . , kr.

§1. Introduction

One of the main themes in extremal set theory are intersecting families. Given some n P N
a family F Ď Pprnsq is said to be intersecting if for all F, F 1 P F we have F X F 1 ‰ ∅.
The following well-known theorem by Erdős, Ko, and Rado [9] is one of the earliest results
in extremal set theory.

Theorem 1.1. Let k, n P N with 2k ď n and let F Ď rnspkq be an intersecting family.
Then |F | ď

`

n´1
k´1

˘

and this bound is sharp.

Observe that this maximum is attained by a family which contains all the sets of size k
that contain one fixed element, for instance F “ tF P rnspkq : 1 P F u.

As a variation cross intersecting families can be considered. For r, t, n P N we say that
families F1, . . . ,Fr Ď Pprnsq are r-cross t-intersecting if for all F1 P F1, . . . , Fr P Fr we
have |

Ş

iPrrs Fi| ě t. Now it is natural to ask for the maximum of
ř

iPrrs |Fi| taken over
all non-empty r-cross t-intersecting families F1, . . . ,Fr. In this regime there are several
partial results concerning the maximal sizes of r-cross t-intersecting families for specific
instances of r and t, starting with theorems by Hilton [21] and by Hilton and Milner [22]
and continued, for instance, in [15, 19, 20, 25, 26] (also see the references therein). We

Key words and phrases. Extremal set theory, cross intersecting families.
The third author was supported by ANID/CONICYT Acuerdo Bilateral DAAD/62170017 through a

Ph.D. Scholarship.
1



2 P. GUPTA, Y. MOGGE, S. PIGA, AND B. SCHÜLKE

determine
ř

iPrrs |Fi| for every r ě 2 and t ě 1 for both uniform families and non-uniform
families (see Corollary 1.3 and Corollary 1.5), solving several problems posed by Shi, Frankl,
Qian [25] and generalising a result by Frankl and Wong H.W. [20].

In fact, we show these results in the more general setting of measures. Here, one can
ask for the maximum measure of families instead of their sizes. More formally, consider
a function µ : Pprnsq Ñ Rě0, that is, a map assigning a weight to each set in Pprnsq.
Now, instead of asking for the maximal size of an intersecting family, we ask for the
maximal measure of an intersecting family, where the measure of a family F Ď Pprnsq

is defined as µpFq “
ř

FPF µpF q. Two commonly considered measures are the product
measure %p and the uniform measure νk. For p P r0, 1s we define the product measure
as %ppF q “ p|F |p1 ´ pqn´|F |, where F P Pprnsq. Note that this can be interpreted as the
probability that a specific set F is the result of a random experiment which includes each
element from rns with probability p in F . The uniform measure νk, with k P rns, is defined
as νkpF q “ 1{

`

n
k

˘

if |F | “ k and νkpF q “ 0 if |F | ‰ k.
For these measures analogues of the Erdős-Ko-Rado theorem can be considered. Indeed,

we can reformulate Theorem 1.1 as follows: For k, n P N with 2k ď n and an intersecting
family F Ď rnspkq it follows that νkpFq ď k

n
. For the product measure the following

analogous result was first proved in [1]. For p ď 1{2 and an intersecting family F Ď Pprnsq

we have %ppFq ď p.
Several results for specific measures and (cross) intersecting families are known, see

[4, 5, 7, 10, 11, 27]. For a more thorough overview we recommend Chapter 12 in [18].
In particular, a result due to Borg [6] determines the maximum product of measures
of 2-cross t-intersecting families.

Since normally the measures considered depend only on the size of the sets, we will
introduce the following abuse of notation. For a function µ : rns0 Ñ Rě0 and a set F Ď rns
we consider the measure F ÞÑ µp|F |q but omit the vertical lines, i.e., we write µpF q
instead of µp|F |q and we refer to µ as a measure. Further, for F Ď Pprnsq we will
write µpFq “

ř

FPF µpF q.
In our main results we determine the maximum sum of measures of r-cross t-intersecting

families. Given n, a, t P N with n ě a ě t consider the families

Apn, a, tq “ tF P Pprnsq : |F X ras| ě tu

Bpn, aq “ tF P Pprnsq : ras Ď F u

Essentially, our main results states that the maximum is attained by families “derived”
from Apn, a, tq and Bpn, aq, even when we consider different kinds of measures (including νk

and %p when p ď 1{2). Given a set A we write Apkq for the set of k-element subsets of A and
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similarly Apďkq for the set containing all subsets of A that are of size at most k. Further,
for F Ď Pprnsq and k P N we set Fk “ tF P F : |F | “ ku and Fďk “ tF P F : |F | ď ku.
Let r be an integer with r ě 2, for every i P rrs let ki P N, and let j P rrs such
that kj “ miniPrrs ki. Then we write secmin

iPrrs
ki “ min

iPrrsrj
ki. Let us now state our first result

which in particular determines the maximum of
ř

iPrrs |Fi| for k-uniform families.

Theorem 1.2. Let r, t, n P N with r ě 2. For i P rrs let ki P rns, µi : rns0 Ñ Rě0,
and Fi Ď rns

pďkiq such that n ě 2 max
iPrrs

ki ` secmin
iPrrs

ki ´ t. If F1, . . . ,Fr are non-empty r-
cross t-intersecting families, then

ÿ

jPrrs

µjpFjq ď max
!

µ`pApn, a, tqďk`q `
ÿ

jPrrsr`

µjpBpn, aqďkjq

)

, (1.1)

where the maximum is taken over ` P rrs and a P
”

t, min
iPrrsr`

ki

ı

.

Note that Apn, i, tq together with r ´ 1 copies of Bpn, iq are r-cross t-intersecting for
every i ě t. Thus, this result is sharp in the sense that there are r-cross t-intersecting
families which attain the bound.

As mentioned above, applying Theorem 1.2 with ki “ k and the measure µi “ νk

`

n
k

˘

for
every i P rrs, we obtain the following result for k-uniform families.

Corollary 1.3. Let r ě 2, and n, t ě 1 be integers, k P rns, and for i P rrs let Fi Ď rns
pkq.

If F1, . . . ,Fr are non-empty r-cross t-intersecting families and n ě 3k ´ t, then
ÿ

jPrrs

|Fj| ď max
mPrt,ks

!

ÿ

iPrt,ks

ˆ

m

i

˙

¨

ˆ

n´m

k ´ i

˙

` pr ´ 1q
ˆ

n´m

k ´m

˙

)

and this bound is attained.

Some special cases of this result were obtained before. For r “ 2 and t ě 1 Corollary 1.3
was proved by Frankl and Kupavskii [15]. For t “ 1 and r ě 2 Corollary 1.3 was shown
very recently in independent work by Shi, Frankl, and Qian [25], where they deduce it
from a result about two families by an elegant application of the Kruskal-Katona theorem.

Note that, in fact, Theorem 1.2 also determines the maximum of
ř

iPrrs |Fi| for families of
different uniformities k1, . . . , kr. This solves a problem posed by Shi, Frankl, and Qian [25]
(apart from the range 2 max

iPrrs
ki ´ t ă n ă 2 max

iPrrs
ki ` secmin

iPrrs
ki ´ t).

In the context of non-uniform families, one of the results of a very recent work by Frankl
and Wong H.W. [20] establishes the maximum possible size of 2-cross t-intersecting families.
The following theorem generalises their result for all r ě 2 and for measures.



4 P. GUPTA, Y. MOGGE, S. PIGA, AND B. SCHÜLKE

Theorem 1.4. Let r, t, n P N with r ě 2. For i P rrs let µi : rns0 Ñ Rě0 be non-increasing,
and let Fi Ď Pprnsq. If F1, . . . ,Fr are non-empty r-cross t-intersecting families, then

ÿ

jPrrs

µjpFjq ď max
!

µ`pApn, a, tqq `
ÿ

jPrrsr`

µjpBpn, aqq
)

, (1.2)

where the maximum is taken over ` P rrs and a P rt, ns.

As before, this bound is attained. Note that by taking µi ” 1 for every i P rrs we obtain
the maximum of

ř

iPrrs |Fi| for r-cross t-intersecting families.

Corollary 1.5. Let r ě 2, n, t ě 1 be integers and let F1, . . . ,Fr Ď Pprnsq be non-
empty r-cross t-intersecting families. Then,

ÿ

jPrrs

|Fj| ď max
mPrt,ns

!

2n´m
ÿ

iPrt,ms

ˆ

m

i

˙

` pr ´ 1q2n´m
)

and this bound is attained.

For a further application, note that Theorem 1.4 also provides the maximum for the
product measure %p, if p ď 1{2.

As it turns out, our proofs for Theorems 1.2 and 1.4 are essentially the same and we
derive them as special cases of the more general Proposition 3.7. This proposition even
considers the case of r-cross t-intersecting families F1, . . . ,Fr when some of them satisfy
the conditions of Theorem 1.2 and some others satisfy the conditions of Theorem 1.4.

1.1. Idea of the proof. Our proof is based on what we call necessary intersection points
(see Definition 3.1). Roughly speaking we say that a vertex a P rns is a necessary intersection
point for r-cross t-intersecting families F1, . . . ,Fr if there are sets in the families which
“depend” on this vertex to fulfil their intersection property. For example, if we consider the 2-
cross 1-intersecting families Apn, 2, 1q and Bpn, 2q, the vertex 2 is a necessary intersection
point because there are pairs of sets that intersect only in 2. In this case, 1 and 2 are the
only necessary intersection points of these families. The idea is to “decrease” the maximal
necessary intersection point as long as possible, i.e., replace the presently considered r-
cross t-intersecting families by r-cross t-intersecting families whose sum of measures is not
smaller but which have a smaller maximal necessary intersection point.

Let F1, . . . ,Fr be some r-cross t-intersecting families and let a P rns be their maximal
necessary intersection point. To construct the new families we first remove all sets that
“depend” on a in one family, say Fr; we call the family of these sets Frpaq. Then a will no
longer be a necessary intersection point. Potentially, there are some subsets of rns which
could not be in any of the other families because they would not intersect “correctly” with
some set in Frpaq. However, after removing Frpaq from Fr and depending on how such a
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set relates with Fr r Frpaq, it may be added to one of the other families without breaking
the intersection property.

There are some structural properties that follow from a being the maximal necessary
intersection point and the fact that the families are shifted. These will help us to analyse
which new sets can actually be added to the families F1, . . . ,Fr´1 and to prove that in fact
the measure of the newly added sets is at least as large as the measure of the removed sets.
Moreover, this analysis guarantees that the new maximal necessary intersection point is at
most a´ 1.

We can iterate this construction and decrease the maximal necessary intersection point in
every step. This process has to stop at a certain point, and we show that then the resulting
families are contained in families with the desired structure (namely Apn, a, tq and Bpn, aq).

§2. Notation and preliminaries

In this section we introduce the notation and some well-known facts about shifting.
For a set A we denote the power set of A as PpAq “ tB : B Ď Au. Let j P N, then
set rjs “ t1, . . . , ju, rjs0 “ rjs Y t0u, and for i P rjs0 set ri, js “ ti, i` 1, . . . , ju. For a set
with a single element, say tiu, we sometimes just write i. Given a set A we write Apkq for
the set of k-element subsets of A and similarly Apďkq for the set containing all subsets of A
that are of size at most k. As mentioned in the introduction, for a function µ : rns0 Ñ Rě0

and a set F Ď rns we consider the measure F ÞÑ µp|F |q but omit the vertical lines, i.e., we
write µpF q instead of µp|F |q and refer to µ as a measure. Further, for F Ď Pprnsq we will
write µpFq “

ř

FPF µpF q.
We now recall the well-known shifting technique. For F Ď rns and i, j P rns we set

σijpF q “

$

&

%

F r tju Y tiu if j P F and i R F

F otherwise
,

and note that |σijpF q| “ |F |. Moreover, for a given F Ď Pprnsq we define the fam-
ily σijpFq “ tσijpF q : F P Fu Y tF P F : σijpF q P Fu and note that |σijpFq| “ |F |.
Further, it can easily be checked that if F Ď Pprnsq is intersecting, then σijpFq is
also intersecting. We say that F Ď Pprnsq is shifted if for all i, j P rns with i ă j

we have σijpFq “ F , i.e., for all F P F we have that σijpF q P F . By shifting an in-
tersecting family F Ď Pprnsq repeatedly, that is, replacing F by σijpFq repeatedly for
all i, j P rns with i ă j, we obtain an intersecting family F 1 that is shifted and for which we
have |F 1| “ |F | and |F 1k| “ |F k|. Thus, to determine the maximal size of an intersecting
family, one can restrict themselves to shifted families.

Moreover, for the sake of completeness, we prove the following fact.
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Fact 2.1. Let a, b P rns. If F1, . . . ,Fr Ď Pprnsq are r-cross t-intersecting, then the
families σabpF1q, . . . , σabpFrq are r-cross t-intersecting.

Proof. Assume the contrary and let F 1i P σabpFiq for every i P rrs such that |
Ş

iPrrs F
1
i | ă t.

For every i P rrs, let Fi “ F 1i if F 1i P F . If F 1i R F , we know that a P F 1i and b R F 1i and we
set Fi “ σbapF

1
i q P Fi. Since F1, . . . ,Fr are r-cross t-intersecting, we have |

Ş

iPrrs Fi| ě t

and so there is some j P rrs such that Fj “ σbapF
1
jq ‰ F 1j . But then we have a R Fj and,

thus, a R
Ş

iPrrs Fi. This yields that

t´ 1 ď |
č

iPrrs

Fi X prnsr ta, buq| “ |
č

iPrrs

F 1i X prnsr ta, buq| . (2.1)

Note that the assumption |
Ş

iPrrs F
1
i | ă t tells us that in fact the left side inequality above

is an equality. This in turn implies that b P
Ş

iPrrs Fi.
Our assumption together with (2.1) also give some ` P rrs such that a R F 1`. Then it

follows by definition that σabpF`q P F` because b P
Ş

iPrrs Fi. Hence, |σabpF`qX
Ş

iPrrsr` Fi| ă t

contradicts F1, . . . ,Fr being r-cross t-intersecting. �

This allows us to restrict ourselves to shifted families when looking for the maximum
sum of measures of r-cross t-intersecting families if the measure of a set F depends only
on the size of F .

§3. Proof of Theorems 1.2 and 1.4

We begin by introducing necessary intersection points which are central to our proofs.

Definition 3.1. Let F1 Ď Pprnsq, . . . ,Fr Ď Pprnsq be r-cross t-intersecting families. We
say a P rns is a necessary intersection point of F1, . . . ,Fr if for all j P rrs there is an Fj P Fj

such that

|ras X
č

jPrrs

Fj| “ t and a P
č

jPrrs

Fj . (3.1)

The following easy lemma is one of the useful properties of necessary intersection points
used together with shifting.

Lemma 3.2. Let F1 Ď Pprnsq, . . . ,Fr Ď Pprnsq be shifted r-cross t-intersecting families
and let a be their maximal necessary intersection point. If i P rrs, F P Fi, and Fj P Fj

for j P rrsr i are such that |ra´ 1s X F X
Ş

jPrrsri Fj| ă t, then ra´ 1s Ď F Y
Ş

jPrrsri Fj.

Proof. We will assume that there is a b P ra´1srpFY
Ť

jPrrsri Fjq and derive a contradiction.
First let us note that a P F . If a R F , we would have |ras X F X

Ş

jPrrsri Fj| ă t.
Since F1, . . . ,Fr are r-cross t-intersecting, this would imply that there is a necessary



r-CROSS t-INTERSECTING FAMILIES VIA NECESSARY INTERSECTION POINTS 7

intersection point larger than a. This in turn would be a contradiction to a being the
maximal necessary intersection point of F1, . . . ,Fr and so we conclude that a P F .

Further, we know that σbapF q P Fi since Fi is shifted and b ă a. But then we
have |ras X σbapF q X

Ş

jPrrsri Fj| ă t , which again contradicts F1, . . . ,Fr being r-cross t-
intersecting with maximal necessary intersection point a. �

Roughly speaking, the proof proceeds by iteratively decreasing the maximal necessary
intersection point, i.e., replacing the currently considered families by families with a smaller
maximal necessary intersection point. In this “updating” process we need to be careful
with those sets which need a fulfil the intersection property. To make this more precise, we
introduce the following notation.

Let F1 Ď Pprnsq, . . . ,Fr Ď Pprnsq be r-cross t-intersecting families and let a be their
maximal necessary intersection point. For every j P rrs define Fjpaq to be the set of
all F P Fj for which there exist Fi P Fi for every i P rrs r j such that (3.1) holds. We
also refer to the sets in Fjpaq as the sets in Fj depending on a. Further, for A Ď ra´ 1s
set FjpA, aq “ tF P Fjpaq : F X ra´ 1s “ Au.

The following lemma is the key of our proof. It will allow us to “push down” the maximal
necessary intersection point of the families considered in case that we are not already
done. Since we will prove Theorem 1.2 and Theorem 1.4 simultaneously (by proving
Proposition 3.7), we phrase this lemma in a general setting. The families with indices
in rr1s are families as in Theorem 1.2 and the remaining families are as in Theorem 1.4.

Lemma 3.3. Let r, t, n P N, r1 P N0 with r ě r1, r ě 2, and r1 ‰ 1, and let a P rns.
If r1 ě 2, for i P rr1s let ki P rns be such that n ě 2 max

iPrr1s
ki ` secmin

iPrr1s
ki ´ t, and

let µi : rns0 Ñ Rě0. For i P rr1` 1, rs set ki “ n and let µi : rns0 Ñ Rě0 be non-increasing.
For i P rrs let Fi Ď rns

pďkiq. If F1, . . . ,Fr are shifted r-cross t-intersecting families with
maximal necessary intersection point a ě t`1 such that for all i P rrs the family Fi rFipaq

is non-empty, then there are non-empty families H1, . . . ,Hr such that

(a) for i P rrs we have Hi Ď rns
pďkiq,

(b) H1, . . . ,Hr are r-cross t-intersecting with maximal necessary intersection point at
most a´ 1, and

(c)
ÿ

jPrrs

µjpHjq ě
ÿ

jPrrs

µjpFjq.

Proof. Roughly speaking, the families H1, . . . ,Hr will be obtained from F1, . . . ,Fr by
deleting Fipaq from some of them and adding new sets to the others. More precisely, define
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for every i P rr1s the family

Fadd
i “

ď

¨

kPrkis

ď

¨

AĎra´1s:
FipA,aqk‰∅

tAY T : T P ra` 1, nspk´|A|qu . (3.2)

and for i P rr1 ` 1, rs define the family Fadd
i “ tF r a : F P Fipaqu. Next, for i P rrs we

set F´
i “ FirFipaq and F`

i “ FiYFadd
i . Note that for all i P rrs we have F`

i ,F´
i Ď rns

pďkiq

and, hence, they satisfy (a).
We aim to show that considering F´

i for some indices and F`
j for the other indices will

yield families as desired. To this end let us now observe the following claim, ensuring that
such a collection will fulfil (b).

Claim 3.4. Let i P rrs.

(1) The families F´
1 , . . . ,F´

i´1,F`
i ,F´

i`1, . . . ,F´
r are r-cross t-intersecting with maximal

necessary intersection point at most a´ 1.
(2) The families F`

1 , . . . ,F`
i´1,F´

i ,F`
i`1, . . . ,F`

r are r-cross t-intersecting with maximal
necessary intersection point at most a´ 1.

Proof. (1): Assume the contrary and let Fj P F´
j for j P rrs r i and Fi P F`

i such
that |ra´ 1s X

Ş

jPrrs Fj| ă t. Since F1, . . . ,Fr are r-cross t-intersecting, this means that
there is some F 1 P Fipaq (potentially F 1 “ Fi) with Fi X ra ´ 1s “ F 1 X ra ´ 1s. But
then |ra´1sXF 1X

Ş

jPrrsri Fj| ă t, which is a contradiction because Fj P F´
j “ Fj rFjpaq.

(2): Assume the contrary and let Fj P F`
j for j P rrsr i and Fi P F´

i such that |ra´1sX
Ş

jPrrs Fj| ă t. Since F1, . . . ,Fr are r-cross t-intersecting, this means that for all j P rrsr i

there is an F 1j P Fjpaq with FjXra´1s “ F 1jXra´1s. But then |ra´1sXFiX
Ş

jPrrsri F
1
j | ă t,

which is a contradiction because Fi P F´
i “ Fi r Fipaq. �

Now, let us show that the updated families will still have maximal measure, that is,
that (c) holds. This essentially follows from the next two claims.

Claim 3.5. For i P rrs we have µipFadd
i q ě µipFipaqq.

Proof. If i P rr1`1, rs, note that the definition of Fadd
i implies an injection ϕ : Fipaq Ñ Fadd

i

with |ϕpF q| “ |F | ´ 1. Thus, recalling that µi is non-increasing, the claim is proved.
If i P rr1s, we need to work a bit more. If r1 “ 0, there is nothing else to show, so

assume that r1 ě 2. First, we want to get an upper bound on a. Let s be the minimal
integer such that there is some m˚ P rr1s and A˚ P ra ´ 1spsq such that Fm˚

pA˚, aq ‰ ∅.
By definition we know that for F P Fm˚

pA˚, aq there are Fj P Fj for all j P rrsrm˚ such
that |ra´1sXFX

Ş

jPrrsrm˚
Fj| ă t. Thus, Lemma 3.2 yields that ra´1s Ď FY

Ş

jPrrsrm˚
Fj .

Since |F X ra´ 1s| “ |A˚| “ s and r1 ě 2, this entails a ď s` 1`minjPrr1srm˚
kj ´ t.
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To show µipFadd
i q ě µipFipaqq it is enough to show that for all k P rkis we have |pFadd

i qk| ě

|pFipaqq
k|.

Further, it is easy to see that for all k P rkis

pFipaqq
k
Ď

ď

¨

AĎra´1s:
FipA,aqk‰∅

tAY aY T : T P ra` 1, nspk´1´|A|q
u .

Hence, in view of (3.2), to show |pFadd
i qk| ě |pFipaqq

k| it is enough to show that for
every A Ď ra ´ 1s with FipA, aq

k ‰ ∅ we have
`

n´a
k´1´|A|

˘

ď
`

n´a
k´|A|

˘

, which in turn holds
if n´a

2 ą k ´ 1´ |A|. And indeed, the bounds on a and n entail

n´ a

2 ě
n´ s´ 1´minjPrr1srm˚

kj ` t

2 ě
2 maxiPrr1s ki ´ s´ 1

2 ą k ´ 1´ |A| .

�

Further let us observe the following.

Claim 3.6. For i P rrs we have Fi X Fadd
i “ ∅.

Proof. Assume there is some F P Fi X Fadd
i . Then, because F P Fadd

i , there is some F 1 P
Fipaq with ra ´ 1s X F “ ra ´ 1s X F 1. For F 1 on the other hand, there are Fj P Fj

for all j P rrs r i such that |ras X F 1 X
Ş

jPrrsri Fj| “ t and a P F 1 X
Ş

jPrrsri Fj. But
since F P Fadd

i , we know that a R F and thus we have |rasXF X
Ş

jPrrsri Fj| ă t. This gives
us a contradiction since F P Fi and F1, . . . ,Fr are r-cross t-intersecting with maximal
necessary intersection point a. �

Finally, we can “update” the collection of families. If µrpFrpaqq ď
ř

iPrr´1s µipFipaqq, we
consider the families Hi “ F`

i for i P rr´1s and Hr “ F´
r . Recall that we have Hi Ď rns

pkiq

for i P rrs and that they are non-empty by the condition that Fi rFipaq ‰ ∅ for all i P rrs.
By Claim 3.4 these families are r-cross t-intersecting with their maximal necessary intersec-
tion point at most a´ 1 and by Claim 3.5, Claim 3.6, and µrpFipaqq ď

ř

iPrr´1s µipFipaqq

we have
ř

iPrrs µipFiq ď
ř

iPrr´1s µipF`
i q ` µrpF´

r q. Together, this yields (a)-(c) in the
conclusion of the lemma.

If µrpFrpaqq ě
ř

iPrr´1s µipFipaqq, we consider the families F´
1 , . . . ,F´

r´1,F`
r . Similarly

as before, it follows that these will satisfy (a)-(c). �

Both Theorem 1.2 and Theorem 1.4 can be obtained from the following more general
result by setting r1 “ r and r1 “ 0 respectively. Moreover, this result also provides the
maximum of

ř

iPrrs µipFiq in the case when some of the families and measures satisfy the
conditions in Theorem 1.2 and the others satisfy those in Theorem 1.4.
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Proposition 3.7. Let r, t, n P N, r1 P N0 with r ě r1, r ě 2, and r1 ‰ 1, and let a P rns.
If r1 ě 2, for i P rr1s let ki P rns be such that n ě 2 max

iPrr1s
ki ` secmin

iPrr1s
ki ´ t, and

let µi : rns0 Ñ Rě0. For i P rr1` 1, rs set ki “ n and let µi : rns0 Ñ Rě0 be non-increasing.
For i P rrs let Fi Ď rns

pďkiq. If F1, . . . ,Fr are non-empty r-cross t-intersecting families
with maximal necessary intersection point at most a, then

ÿ

jPrrs

µjpFjq ď max
!

µ`pApn, a˚, tqďk`q `
ÿ

jPrrsr`

µjpBpn, a˚qďkjq

)

, (3.3)

where the maximum is taken over ` P rrs and a˚ P
”

t,min
 

a, min
iPrrsr`

ki

(

ı

.

Proof. We perform an induction on r. The beginning is the same for the induction start
and the induction step. Let all the parameters and µi be given as in the statement of the
theorem and note that without restriction t ď miniPrrs ki. Further, let F1, . . . ,Fr be such
that

(1) for i P rrs we have Fi Ď rns
pďkiq,

(2) they are r-cross t-intersecting with maximal necessary intersection point at most a,
(3) they maximise

ř

jPrrs µjpFjq among all families satisfying (1) and (2),
(4) their maximal necessary intersection point is minimal among those families that

fulfil (1), (2), and (3).

Since the properties (1), (2), (3), and (4) are preserved when shifting, we may assume
that F1, . . . ,Fr are shifted. Denote the maximal necessary intersection point of F1, . . . ,Fr

by a˚ and observe that if a˚ “ t, we are done. So we assume that a˚ ě t` 1.
First, consider the case that for all i P rrs we have that F´

i ‰ ∅. Then Lemma 3.3 yields
families H1, . . . ,Hr satisfying (1)-(3) with a maximal necessary intersection point smaller
than a˚. This is a contradiction to the choice of the families (see (4)) and thereby completes
the proof of both the induction start and the induction step.

Second, consider the case that for some j P rrs, without loss of generality r, it holds
that Fr r Frpa˚q “ ∅. That is to say, all sets in Fr depend on a˚.

Assume that there is a b P ra˚ ´ 1s and F P Fr such that b R F . As Fr is shifted, we
have that σba˚

pF q P Fr, but this set does not depend on a˚. Hence, for every F P Fr we
have ra˚s Ď F , in other words Fr Ď Bpn, a˚qďkr .

For r “ 2 notice that since a˚ is the maximal necessary intersection point, every F1 P F1

has at least t elements in ra˚s. This yields F1 Ď Apn, a˚, tqďk1 and hence

µ1pF1q ` µ2pF2q ď µ1pApn, a˚, tqďk1q ` µ2pBpn, a˚qďk2q ,

which finishes the proof of the induction start.
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For r ě 3 observe that the families F1, . . . ,Fr´1 are pr ´ 1q-cross t-intersecting families
with maximal necessary intersection point at most a˚ which maximise

ř

jPrr´1s µjpFjq

(among all pr´ 1q-cross t-intersecting families Gi Ď rns
pkiq with maximal necessary intersec-

tion point at most a˚). Thus, the induction hypothesis implies that there is an ` P rr ´ 1s
and an a˚˚ P ra˚s such that

ÿ

jPrr´1s
µjpFjq ď µ`pApn, a˚˚, tqďk`q `

ÿ

jPrr´1sr`

µjpBpn, a˚˚qďkjq .

Since Fr Ď Bpn, a˚qďkr Ď Bpn, a˚˚qďkr , this entails
ÿ

jPrrs

µjpFjq ď µ`pApn, a˚˚, tqďk`q `
ÿ

jPrrsr`

µjpBpn, a˚˚qďkjq

which finishes the induction step. �

§4. Concluding remarks

Observe that the maxima in our results are attained for different i (and `), depending
on the measures and r, t, and n. However, we remark the following.
Remark 4.1. For given t, n, k P N and a measure µ there is an r0 such that if r ě r0,
the maximum in Theorem 1.2 and Theorem 1.4 is always attained for i “ t if µ “ µj

(and kj “ k) for all j P rrs.
One can also ask for the maximum of the product of sizes or, more generally, the product

of measures of r-cross t-intersecting families, instead of the sum. More precisely, for given
measures µ1, . . . , µr find the maximum possible value of

ź

iPrrs

µipFiq (4.1)

for F1, . . . ,Fr being r-cross t-intersecting families.
There are some partial results concerning this problem ([6, 16, 23, 24]). Frankl and

Tokushige [17] determined the maximal product of the sizes of r-cross 1-intersecting
families. In [6], Borg determined the maximum of (4.1) for r “ 2 and measures with
certain properties (which include the product measure, the uniform measure, and the
constant measure). It is well known that for a1, . . . , ar P Rě0 with

ř

iPrrs ai ď a the
product

ś

iPrrs ai is maximised if ai “
a
r
for all i P rrs. Therefore, considering Remark 4.1,

given n, measures µi “ µ (and ki “ k) with µ (and k and n) satisfying the conditions in
Theorem 1.2 or Theorem 1.4, there is an r0 such that for r ě r0 these theorems actually also
yield that the maximum of (4.1) is pµpBpn, tqďkqqr. This particularly includes the product
measure, the uniform measure, and the constant measure, and solves a few instances of
the Problems 12.10 and 12.11, and of the Conjectures 12.12 and 12.13 posed by Frankl
and Tokushige in [18].
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